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e System description
e Summary of Improvements
 Large corpus experiment
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System description

e Same as last year: 2-pass word-internal GD

trigram Viterbi (EWAVES)
* Improvements made on the models

Decode

—>

1-best
adapt

—>

Decode
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Summary of improvements

e Official RTO2 results
— 10xRT: 20.1% WER
— IXRT: 23.7% WER

e RTO3S system, RT02 set:  RTO03evl
- 10xRT: 16.1% WER 15.2% WER
- IXRT: 19.8% WER 20% WER

e 20% WER Iimprovement or 10x in speed
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Strategy

o Spend 60% on system development

e Spend 40% on “new features”
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Improvements

Last year’s system
Tuning & retraining
MLLU features
TDT/MMI

MLLU adapt

LM

Reseg TDT (post-eval)

20.1% WE
19.6% WE
19.0% WE
17.5% WE
16.8% WE
16.1% WE
15.3% WE

A A AU A AU A A
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Improvements
e Last year’'s system 20.1% WER
e Tuning & retraining 19.6% WER
« MLLU features 19.0% WER
« MLLU adapt 16.8% WER
o LM 16.1% WER

I

 Reseg TDT (post-eval) 15.2% WE

=> 2.4% absolute from MMI on large corpus
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Large Corpus

Recent CoreTex research
10k hours corpus collection has begun

Statistical learners are slow

Much time spent in smoothing algorithms
Let the machines do the thinking

Isolet syndrome: low portability
Over-training in general
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TDT Collection

2: 550
3: 400
4: 350

Versus
Hub4: 200h, 1.2M

One order of magnitude

pout 1400h of data, 38M words

n, 20M words
N, 9M words (delete Dec 1998)

N, 9M words
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Lightly supervised training
[LIMSI]

DT2: 550h

Match the baseline, ignore Hub4train
No discriminative training

Filtering is different

Iterate many times

All tokens are trainable: breath, cough, etc.
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Sound files | )

Closed-captions

:> Normalize :>

TDT processing

Segments

—
—

Word align

Decode

lattices
Decode
_ phones
Force align
Train
Filter ||

Correct labels
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Text processing

* From captions to ASR transcripts
* Reverse MDE task
e Our standard LM normalizer

Sound files | ——)

Closed-captions
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Erosion filter

e Cross-word contexts (ripple effect)
— If no match, then probably wrong context

* Time alignment of wrong words
— Corrupt the alignment of neighboring words

e DP match is too “nice”
— E.g.:.thethee. e. aa.

Good Monday 3vening%there are signs that the
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Biased training

Amount of training data depends on
language model probability

=> apply the LM twice?

Amount depends on quality of speech
(recognition results)

Depends on prior probability in general
(Male/Female)

We Ignore these issues
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Error-proof training

Manual processing Is not practical

Major difficulty in large amounts: outliers
Murphy’s law (NFS, max inodes, ...)
Crash, fix, and retry Is not practical
Simple rule: DISCARD

Error-proof training
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Incorporation of new data

TDT4 arrives in PSTL on April 4, 2003.
Decodings: 5h (1-best), 7h (lattice gen)

Start with 1-iteration MMI models
— 15h / iteration

30h + 12h + crash + processing

Integrated 350h of data in one week-end with
error-proof training

Many thanks to Stephanie Strassel and publishing
group at LDC!



Numerator 1 the | 1 not you 1

Integration of the denominator is non-trivial, but does not matter
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Scalability: orders of magnitude
Total training: 1600h

Utterances: 500k
|_abels: 6 GB
Lattices: 98 GB
Current cluster: 88 CPU

Decode (lattice gen) 50h audio / h cluster

MMI: Raw Filtered
— Females: 6h /1t 409h  272h
— Males: Oh/it 1028h 687h
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Towards 10°000h corpus?

e 360h/ mo (LDC)
e Two years (>24mo) to complete (2005)

Amount of training

10000

1000 - W@Qﬂ Eﬂﬂﬂ@ T@?
o — 7
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“ TIMIT :
1 |
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LinLog Slowdown Rule

Hypothesis: 6x data (1600h=>10000h)
Training is linear: 6x
More Gaussians: log(6x)

But:

— Moore Law (exp) vs linear LDC collection (lin)
2yr. CPUXx4, datax6

— Algorithmic improvements (linear?)

Simplify, rather than complicate, training (e.g.
absolute discounting vs Turing-Good)
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TDT: Conclusion

Scaled up standard training techniques

Successful particularly with data savvy
MMI and Gender Dependent

XW pentaphones, SAT not considered yet
silence, word fragments not considered
Smoothing tuning disappears

This 1s merely the beginning...
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Fiscus-Moore Effect

Fiscus: variability is good
— [Schwenk & Gauvain 2000: Improving ROVER]
Moore: 2 X 10XRT now = 10xRT next year

Can guarantee 10% relative improvement for two
consecutive years

=>In 2005, 8.6% WER @ 9xRT w/o much work
If team up or share resources
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Fiscus-Moore: results

12 of RTO3S (spkr set), ROVER=0xRT

BBN: 10.8%, LIMSI: 10.8%, SRI: 13.4%,
CU: 10.4%, CU-1x: 14.2%

RTO4.
— BBN+LIMSI: 9.7% (17.5xRT)
— BBN+LIMSI+CU-1x: 9.3% (18.4xRT)

RTOS5:
— BBN+LIMSI+SRI+CU: 8.6% (36.2xRT)

[Thanks to Phil Woodland and Jon Fiscus for providing CTMs]
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Conclusion

25% Improvement since last year
Large corpus experiment

Other improvements from MLLU, LM
Word internal decoder

More contributions
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END

Any guestions?
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MLLU

Maximume-likelthood Lower-Upper
transformation

Presented at ICSLP02

Closed-form solutions for linear feature
transformation

Problem similar to matrix inversion (logdet)
Better control than Laplace expansion
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